LONGEST COMMON EXTENSIONS IN SUBLINEAR SPACE

PHILIP BILLE
INGE LI GØRTZ
MATHIAS BÆK TEJS KNUDSEN
MOSHE LEWENSTEIN
HJALTE WEDEL VILDHØJ

CPM 2015 June 29, 2015

THE LONGEST COMMON EXTENSION PROBLEM

Prepreprocess T of length n to support the query:

LCE(i,j): return the length of the longest common prefix of T[i...n] and T[j...n]

THE LONGEST COMMON EXTENSION PROBLEM PREFIX

Prepreprocess T of length n to support the query:

LCE(i,j): return the length of the longest common prefix of T[i...n] and T[j...n]

Prepreprocess T of length n to support the query:

LCE(i,j): return the length of the longest common prefix of T[i...n] and T[j...n]

Example

$$LCE(3,6)=5$$

Prepreprocess T of length n to support the query:

LCE(i,j): return the length of the longest common prefix of T[i...n] and T[j...n]

Example

$$T = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ A & C & A & C & B & A & C & B & A & C & C \end{bmatrix}$$
Suffix 3 A C B A C B A C C

$$LCE(3,6)=5$$

Prepreprocess T of length n to support the query:

LCE(i,j): return the length of the longest common prefix of T[i...n] and T[j...n]

Example

$$T = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ A & C & A & C & B & A & C & B & A & C & C \end{bmatrix}$$
Suffix 3 A C B A C C Suffix 6 A C B A C C

$$LCE(3,6)=5$$

 $\ell = LCE(i,j)$

 $\ell = LCE(i,j)$

		Space	Time
1	Store nothing	O(1)	$O(\ell)=O(n)$

0			/ •	• 1
<i>Y</i> =	Ц			. []
			\ 	/

		Space	Time
1	Store nothing	O(1)	$O(\ell)=O(n)$
2	Store the suffix tree of T	O(n)	O(1)

$\rho = 1$	\mathbf{C}	/:	: \
t = 1		(Ι,	1)

		Space	Time
1	Store nothing	O(1)	$O(\ell)=O(n)$
2	Store the suffix tree of T	O(n)	O(1)

OUR RESULTS

 $\ell = LCE(i,j)$

SIMPLE SOLUTIONS

		Space	Time
1	Store nothing	O(1)	$O(\ell)=O(n)$
2	Store the suffix tree of T	O(n)	O(1)

OUR RESULTS

SIMPLE SOLUTIONS

		Space	Time
1	Store nothing	O(1)	$O(\ell)=O(n)$
2	Store the suffix tree of T	O(n)	O(1)

Can we obtain $O(n/\tau)$ space and $O(\tau)$ time for all $1 \le \tau \le n$?

SIMPLE SOLUTIONS

		Space	Time
1	Store nothing	O(1)	$O(\ell)=O(n)$
2	Store the suffix tree of T	O(n)	O(1)

CPM 2012 RESULTS*

		Space	Time	Trade-off range
3	Deterministic trade-off	$O(n/\tau)$	$O(\tau^2)$	1≤ <i>τ</i> ≤√n
4	Randomized trade-off	$O(n/\tau)$	$O(\tau \log(\ell/\tau))$	1≤ <i>τ</i> ≤n

Can we obtain $O(n/\tau)$ space and $O(\tau)$ time for all $1 \le \tau \le n$?

OUR RESULTS

 $\ell = LCE(i,j)$

SIMPLE SOLUTIONS

		Space	Time
1	Store nothing	O(1)	$O(\ell)=O(n)$
2	Store the suffix tree of T	O(n)	O(1)

CPM 2012 RESULTS*

		Space	Time	Trade-off range
3	Deterministic trade-off	$O(n/\tau)$	$O(\tau^2)$	1≤ <i>τ</i> ≤√n
4	Randomized trade-off	$O(n/\tau)$	$O(\tau \log(\ell/\tau))$	1≤ <i>τ</i> ≤n

CPM 2015 RESULTS

		Space	Time	Trade-off range
5	NEW deterministic trade-off	$O(n/\tau)$	$O(\tau log^2(n/\tau))$	1/logn≤τ≤n
6	NEW randomized trade-off	$O(n/\tau)$	O(au)	1≤ <i>τ</i> ≤n

*Philip Bille, Inge Li Gørtz, Benjamin Sach, Hjalte Wedel Vildhøj, Time-Space Trade-Offs for Longest Common Extensions, CPM 2012

THE NEW DETERMINISTIC TRADE-0FF

TWO STRUCTURES

Data Structure 1: O(n/ τ) space and O(τ) time, but works only if $|i-j| < \tau$

Data Structure 2: $O(n/\tau)$ space and $O(\tau \log^2(n/\tau))$ time:

Reduces an LCE(i,j) query to another query LCE(i',j') s.t. $|i'-j'| < \tau$

Lemma

An LCE(i,j) query where i and j are in separate halves of T can be reduced to another LCE(i',j') query such that i' and j' are in the same half of T

Lemma

An LCE(i,j) query where i and j are in separate halves of T can be reduced to another LCE(i',j') query such that i' and j' are in the same half of T

Lemma

An LCE(i,j) query where i and j are in separate halves of T can be reduced to another LCE(i',j') query such that i' and j' are in the same half of T

Lemma

An LCE(i,j) query where i and j are in separate halves of T can be reduced to another LCE(i',j') query such that i' and j' are in the same half of T

The suffix in the left half that maximizes the LCE value

An LCE(i,j) query where i and j are in separate halves of T can be reduced to another LCE(i',j') query such that i' and j' are in the same half of T

Proof

Assume that j is a sampled position

Lemma

An LCE(i,j) query where i and j are in separate halves of T can be reduced to another LCE(i',j') query such that i' and j' are in the same half of T

Proof

Assume that j is a sampled position

Lemma

An LCE(i,j) query where i and j are in separate halves of T can be reduced to another LCE(i',j') query such that i' and j' are in the same half of T

- Assume that j is a sampled position
- Then $LCE(i,j) \le h$, so we can compute LCE(i,j) as LCE(i,j')

The suffix in the left half that maximizes the LCE value

Lemma

An LCE(i,j) query where i and j are in separate halves of T can be reduced to another LCE(i',j') query such that i' and j' are in the same half of T

- Assume that j is a sampled position
- Then $LCE(i,j) \le h$, so we can compute LCE(i,j) as LCE(i,j')

Lemma

An LCE(i,j) query where i and j are in separate halves of T can be reduced to another LCE(i',j') query such that i' and j' are in the same half of T

- Assume that j is a sampled position
- Then LCE(i,j) ≤ h, so we can compute LCE(i,j) as LCE(i,j')

$$LCE(i,j) = min(LCE(i,j'), h)$$

Lemma

An LCE(i,j) query where i and j are in separate halves of T can be reduced to another LCE(i',j') query such that i' and j' are in the same half of T

- Assume that j is a sampled position
- Then LCE(i,j) ≤ h, so we can compute LCE(i,j) as LCE(i,j')

$$LCE(i,j) = min(LCE(i,j'), h)$$

Lemma

An LCE(i,j) query where i and j are in separate halves of T can be reduced to another LCE(i',j') query such that i' and j' are in the same half of T

Proof

- Assume that j is a sampled position
- Then LCE(i,j) ≤ h, so we can compute LCE(i,j) as LCE(i,j')

LCE(i,j) = min(LCE(i,j'), h)

 $O(\tau)$ time

τ

Build data structure recursively for left and right half of T

Build data structure recursively for left and right half of T

Build data structure recursively for left and right half of T

- Build data structure recursively for left and right half of T
- Stop when strings are $< 2\tau$

- Build data structure recursively for left and right half of T
- Stop when strings are $<2\tau$

Analysis

- $n/(2\tau)$ sampled positions on each level
- $\log(n/\tau)$ levels
- $O(\tau)$ time on each level

- Build data structure recursively for left and right half of T
- Stop when strings are $<2\tau$

Analysis

- $n/(2\tau)$ sampled positions on each level
- $\log(n/\tau)$ levels
- $O(\tau)$ time on each level

 $O((n/\tau)\log(n/\tau))$ space $O(\tau\log(n/\tau))$ time

- Build data structure recursively for left and right half of T
- Stop when strings are $<2\tau$

Analysis

- $n/(2\tau)$ sampled positions on each level
- $\log(n/\tau)$ levels
- $O(\tau)$ time on each level

O(n/ au) space $O(au \log^2(n/ au))$ time

SHAVING TWO LOGS

 $O(n/\tau)$ space $O(\tau log^2(n/\tau))$ time

 $O(n/\tau)$ space $O(\tau)$ time

SHAVING TWO LOGS

 $O(n/\tau)$ space $O(\tau log^2(n/\tau))$ time

 $O(n/\tau)$ space $O(\tau log(\ell/\tau))$ time

 $O(n/\tau)$ space $O(\tau)$ time

SHAVING TWO LOGS

 $O(n/\tau)$ space $O(\tau log^2(n/\tau))$ time

 $O(n/\tau)$ space $O(\tau log(\ell/\tau))$ time

 $O(n/\tau)$ space $O(\tau + log(\ell/\tau))$ time

 $O(n/\tau)$ space $O(\tau)$ time

 $O(n/\tau)$ space $O(\tau log(\ell/\tau))$ time

 $O(n/\tau)$ space $O(\tau log(\ell/\tau))$ time

au

- 1. Perform exponential search to find an interval containing the first mismatch (Compare the substrings by their Karp-Rabin fingerprints)
- 2. Scan the interval directly to find the mismatch

- 1. Perform exponential search to find an interval containing the first mismatch (Compare the substrings by their Karp-Rabin fingerprints)
- 2. Scan the interval directly to find the mismatch

- 1. Perform exponential search to find an interval containing the first mismatch (Compare the substrings by their Karp-Rabin fingerprints)
- 2. Scan the interval directly to find the mismatch

- 1. Perform exponential search to find an interval containing the first mismatch (Compare the substrings by their Karp-Rabin fingerprints)
- 2. Scan the interval directly to find the mismatch

- 1. Perform exponential search to find an interval containing the first mismatch (Compare the substrings by their Karp-Rabin fingerprints)
- 2. Scan the interval directly to find the mismatch

Data structure

Stores fingerprint of every block aligned suffix

 \Rightarrow the fingerprint of any substring can be retrieved in $O(\tau)$ time

NEXT STEP

 $O(n/\tau)$ space $O(\tau \log^2(n/\tau))$ time

 $O(n/\tau)$ space $O(\tau log(\ell/\tau))$ time

 $O(n/\tau)$ space $O(\tau + log(\ell/\tau))$ time

 $O(n/\tau)$ space $O(\tau)$ time

 $O(n/\tau)$ space $O(\tau + \log(\ell/\tau))$ time

Some definitions

 $O(n/\tau)$ space $O(\tau + \log(\ell/\tau))$ time

Some definitions

A block

 $O(n/\tau)$ space $O(\tau + log(\ell/\tau))$ time

 $O(n/\tau)$ space $O(\tau + log(\ell/\tau))$ time

 $O(n/\tau)$ space $O(\tau + log(\ell/\tau))$ time

In a block k we sample b_k evenly spaced positions, where $b_k = \min(2^{\mu/2}, \tau)$

 $O(n/\tau)$ space $O(\tau + log(\ell/\tau))$ time

In a block k we sample b_k evenly spaced positions, where $b_k = min(2\mu^2, \tau)$ Significance of block k

 $O(n/\tau)$ space $O(\tau + log(\ell/\tau))$ time

Some definitions

A block

In a block k we sample b_k evenly spaced positions, where $b_k = \min(2^{\mu/2}, \tau)$ Significance of block k

 $O(n/\tau)$ space $O(\tau + \log(\ell/\tau))$ time

In a block k we sample b_k evenly spaced positions, where $b_k = min(2\mu/2, \tau)$ Significance of block k

 $O(n/\tau)$ space $O(\tau + log(\ell/\tau))$ time

In a block k we sample b_k evenly spaced positions, where $b_k = \min(2^{\mu/2}, \tau)$

Significance of block k

 $O(n/\tau)$ space $O(\tau + log(\ell/\tau))$ time

In a block k we sample b_k evenly spaced positions, where $b_k = \min(2^{\mu/2}, \tau)$

Significance of block k

 $O(n/\tau)$ space $O(\tau + log(\ell/\tau))$ time

In a block k we sample b_k evenly spaced positions, where $b_k = \min(2^{\mu/2}, \tau)$

Significance of block k

 $O(n/\tau)$ space $O(\tau + log(\ell/\tau))$ time

In a block k we sample b_k evenly spaced positions, where $b_k = \min(2^{\mu/2}, \tau)$

Significance of block k

Bounding the number of sampled positions

$$|\mathcal{S}| = \sum_{k=0}^{n/\tau - 1} b_k \le \sum_{\mu=0}^{\lg(n/\tau)} 2^{\lg(n/\tau) - \mu} 2^{\lfloor \mu/2 \rfloor} \le \frac{n}{\tau} \sum_{\mu=0}^{\infty} 2^{-\mu/2} = \left(2 + \sqrt{2}\right) \frac{n}{\tau} = O\left(\frac{n}{\tau}\right)$$

 $O(n/\tau)$ space $O(\tau + \log(\ell/\tau))$ time

$$j = \dots 10 \dots 0[tail]$$

$$j = \dots 10 \dots 0[tail]$$

$$2^{\mu}\tau = \dots 10 \dots 0000\dots$$

$$j =10....0[tail]$$
 $2^{\mu}\tau =10....0000...$

$$j+2^{\mu}\tau=\dots 00\dots 0[tail]$$

 $O(n/\tau)$ space $O(\tau + log(\ell/\tau))$ time

Distance to a sampled position is at most $\tau/2^{\mu/2}$

 $O(n/\tau)$ space $O(\tau + log(\ell/\tau))$ time

Distance to a sampled position is at most $\tau/2^{\mu/2}$ \Longrightarrow Time to compute φ (a) is O(1+ $\tau/2^{\mu/2}$)

Query time

Cost of computing a fingerprint is O(1+ τ /2 $^{\mu/2}$), and μ iterates from 0 to log(ℓ/τ) and back to 0, thus the query time becomes

$$O\left(\sum_{\mu=0}^{\lg(\ell/\tau)} 1 + \tau/2^{\lfloor \mu/2 \rfloor}\right) = O(\tau + \log(\ell/\tau))$$

Space

Cost is the total number of sampled positions/fingerprints

$$|\mathcal{S}| = \sum_{k=0}^{n/\tau - 1} b_k \le \sum_{\mu = 0}^{\lg(n/\tau)} 2^{\lg(n/\tau) - \mu} 2^{\lfloor \mu/2 \rfloor} \le \frac{n}{\tau} \sum_{\mu = 0}^{\infty} 2^{-\mu/2} = \left(2 + \sqrt{2}\right) \frac{n}{\tau} = O\left(\frac{n}{\tau}\right)$$

NEXT STEP

 $O(n/\tau)$ space $O(\tau log^2(n/\tau))$ time

 $O(n/\tau)$ space $O(\tau log(\ell/\tau))$ time

 $O(n/\tau)$ space $O(\tau + log(\ell/\tau))$ time

 $O(n/\tau)$ space $O(\tau)$ time

 $O(n/\tau)$ space $O(\tau)$ time

Theorem

There is an $O(n/\tau)$ space data structure that in O(1) time either

- A. computes the answer to an LCE(i,j) query, or
- **B.** returns a certificate that $\ell < \tau^2$

Observation

In case B the query time of our previous algorithm becomes $O(\tau + \log(\ell/\tau)) = O(\tau)$

Technique

Difference covers

SUMMARY & OPEN PROBLEMS

MAIN THEOREM

The LCE problem can be solved in $O(n/\tau)$ space and $O(\tau)$ time for all $1 \le \tau \le n$

Lower bound from RMQ implies a time-space product of $\Omega(n/\log n)$ Can we close this gap?

Can we obtain optimal preprocessing times?