
Fingerprints in Compressed Strings

Philip Bille1, Patrick Hagge Cording1, Inge Li Gørtz1?, Benjamin Sach2,
Hjalte Wedel Vildhøj1, and Søren Vind1??

1 Technical University of Denmark, DTU Compute
{phbi,phaco,inge,hwvi,sovi}@dtu.dk

2 University of Warwick, Department of Computer Science
sach@dcs.warwick.ac.uk

Abstract. The Karp-Rabin fingerprint of a string is a type of hash
value that due to its strong properties has been used in many string
algorithms. In this paper we show how to construct a data structure
for a string S of size N compressed by a context-free grammar of size
n that answers fingerprint queries. That is, given indices i and j, the
answer to a query is the fingerprint of the substring S[i, j]. We present the
first O(n) space data structures that answer fingerprint queries without
decompressing any characters. For Straight Line Programs (SLP) we
get O(logN) query time, and for Linear SLPs (an SLP derivative that
captures LZ78 compression and its variations) we get O(log logN) query
time. Hence, our data structures has the same time and space complexity
as for random access in SLPs. We utilize the fingerprint data structures to
solve the longest common extension problem in query time O(logN log `)
and O(log ` log log `+ log logN) for SLPs and Linear SLPs, respectively.
Here, ` denotes the length of the LCE.

1 Introduction

Given a string S of size N and a Karp-Rabin fingerprint function φ, the answer
to a Fingerprint(i, j) query is the fingerprint φ(S[i, j]) of the substring S[i, j].
We consider the problem of constructing a data structure that efficiently answers
fingerprint queries when the string is compressed by a context-free grammar of
size n.

The fingerprint of a string is an alternative representation that is much
shorter than the string itself. By choosing the fingerprint function randomly at
runtime it exhibits strong guarantees for the probability of two different strings
having different fingerprints. Fingerprints were introduced by Karp and Ra-
bin [20] and used to design a randomized string matching algorithm. Since then,
they have been used as a central tool to design algorithms for a wide range of
problems (see e.g., [2, 3, 11–13,15,16,19,22]).

? Supported by a grant from the Danish Council for Independent Research | Natural
Sciences.

?? Supported by a grant from the Danish National Advanced Technology Foundation.

A fingerprint requires constant space and it has the useful property that
given the fingerprints φ(S[1, i − 1]) and φ(S[1, j]), the fingerprint φ(S[i, j]) can
be computed in constant time. By storing the fingerprints φ(S[1, i]) for i =
1 . . . N a query can be answered in O(1) time. However, this data structure uses
O(N) space which can be exponential in n. Another approach is to use the data
structure of Ga̧sieniec et al. [17] which supports linear time decompression of a
prefix or suffix of the string generated by a node. To answer a query we find the
deepest node that generates a string containing S[i] and S[j] and decompress
the appropriate suffix of its left child and prefix of its right child. Consequently,
the space usage is O(n) and the query time is O(h+ j− i), where h is the height
of the grammar. The O(h) time to find the correct node can be improved to
O(logN) using the data structure by Bille et al. [8] giving O(logN + j− i) time
for a Fingerprint(i, j) query. Note that the query time depends on the length
of the decompressed string which can be large.

We present the first data structures that answers fingerprint queries on gram-
mar compressed strings without decompressing any characters, and improve all
of the above time-space trade-offs. Assume without loss of generality that the
compressed string is given as a Straight Line Program (SLP). An SLP is a gram-
mar in Chomsky normal form, i.e., each nonterminal has exactly two children. A
Linear SLP is an SLP where the root is allowed to have more than two children,
and for all other internal nodes, the right child must be a leaf. Linear SLPs cap-
ture the LZ78 compression scheme [27] and its variations. Our data structures
give the following theorem.

Theorem 1. Let S be a string of length N compressed into an SLP G of size n.
We can construct data structures that support Fingerprint queries in:

(i) O(n) space and query time O(logN)

(ii) O(n) space and query time O(log logN) if G is a Linear SLP

Hence, we show a data structure for fingerprint queries that has the same time
and space complexity as for random access in SLPs.

Our fingerprint data structures are based on the idea that a random access
query for i produces a path from the root to a leaf labelled S[i]. The concate-
nation of the substrings produced by the left children of the nodes on this path
produce the prefix S[1, i]. We store the fingerprints of the strings produced by
each node and concatenate these to get the fingerprint of the prefix instead.
For Theorem 1(i), we combine this with the fast random access data structure
by Bille et al. [8]. For Linear SLPs we use the fact that the production rules
form a tree to do large jumps in the SLP in constant time using a level ancestor
data structure. Then a random access query is dominated by finding the node
that produces S[i] among the children of the root, which can be modelled as the
predecessor problem.

Furthermore, we show how to obtain faster query time in Linear SLPs using
finger searching techniques. Specifically, a finger for position i in a Linear SLP
is a pointer to the child of the root that produces S[i].

Theorem 2. Let S be a string of length N compressed into an SLP G of size n.
We can construct an O(n) space data structure such that given a finger f for
position i or j, we can answer a Fingerprint(i, j) query in time O(log logD)
where D = |i− j|.

Along the way we give a new and simple reduction for solving the finger prede-
cessor problem on integers using any predecessor data structure as a black box.

In compliance with all related work on grammar compressed strings, we as-
sume that the model of computation is the RAM model with a word size of logN
bits.

Longest common extension in compressed strings As an application we
show how to efficiently solve the longest common extension problem (LCE).
Given two indices i, j in a string S, the answer to the LCE(i, j) query is the
length ` of the maximum substring such that S[i, i + `] = S[j, j + `]. The com-
pressed LCE problem is to preprocess a compressed string to support LCE
queries. On uncompressed strings this is solvable in O(N) preprocessing time,
O(N) space, and O(1) query time with a nearest common ancestor data struc-
ture on the suffix tree for S [18]. Other trade-offs are obtained by doing an
exponential search over the fingerprints of strings starting in i and j [7]. Us-
ing the exponential search in combination with the previously mentioned meth-
ods for obtaining fingerprints without decompressing the entire string we get
O((h+ `) log `) or O((logN + `) log `) time using O(n) space for an LCE query.
Using our new (finger) fingerprint data structures and the exponential search we
obtain Theorem 3.

Theorem 3. Let G be an SLP of size n that produces a string S of length N .
The SLP G can be preprocessed in O(N) time into a Monte Carlo data structure
of size O(n) that supports LCE queries on S in

(i) O(log ` logN) time
(ii) O(log ` log log `+ log logN) time if G is a Linear SLP.

Here ` denotes the LCE value and queries are answered correctly with high prob-
ability. Moreover, a Las Vegas version of both data structures that always an-
swers queries correctly can be obtained with O(N2/n logN) preprocessing time
with high probability.

We furthermore show how to reduce the Las Vegas preprocessing time to
O(N logN log logN) when all the internal nodes in the Linear SLP are children
of the root (which is the case in LZ78).

The following corollary follows immediately because an LZ77 compression [26]
consisting of n phrases can be transformed to an SLP with O(n log N

n) produc-
tion rules [9, 23].

Corollary 1. We can solve the LCE problem in O(n log N
n) space and query

time O(log ` logN) for LZ77 compression.

Finally, the LZ78 compression can be modelled by a Linear SLP GL with con-
stant overhead. Consider an LZ78 compression with n phrases, denoted r1, . . . , rn.
A terminal phrase corresponds to a leaf in GL, and each phrase rj = (ri, a), i < j,
corresponds to a node v ∈ GL with ri corresponding to the left child of v and the
right child of v being the leaf corresponding to a. Therefore, we get the following
corollary.

Corollary 2. We can solve the LCE problem in O(n) space and query time
O(log ` log log `+ log logN) for LZ78 compression.

2 Preliminaries

Let S = S[1, |S|] be a string of length |S|. Denote by S[i] the character in S at
index i and let S[i, j] be the substring of S of length j − i+ 1 from index i ≥ 1
to |S| ≥ j ≥ i, both indices included.

A Straight Line Program (SLP) G is a context-free grammar in Chomsky
normal form that we represent as a node-labeled and ordered directed acyclic
graph. Each leaf in G is labelled with a character, and corresponds to a terminal
grammar production rule. Each internal node in G is labeled with a nonterminal
rule from the grammar. The unique string S(v) of length size(v) = |S(v)| is
produced by a depth-first left-to-right traversal of v ∈ G and consist of the
characters on the leafs in the order they are visited. We let root(G) denote the
root of G, and left(v) and right(v) denote the left and right child of an internal
node v ∈ G, respectively.

A Linear SLP GL is an SLP where we allow root(GL) to have more than
two children. All other internal nodes v ∈ GL have a leaf as right(v). Although
similar, this is not the same definition as given for the Relaxed SLP by Claude
and Navarro [10]. The Linear SLP is more restricted since the right child of any
node (except the root) must be a leaf. Any Linear SLP can be transformed into
an SLP of at most double size by adding a new rule for each child of the root.

We extend the classic heavy path decomposition of Harel and Tarjan [18] to
SLPs as in [8]. For each node v ∈ G, we select one edge from v to a child with
maximum size and call it the heavy edge. The remaining edges are light edges.
Observe that size(u) ≤ size(v)/2 if v is a parent of u and the edge connecting
them is light. Thus, the number of light edges on any path from the root to
a leaf is at most O(logN). A heavy path is a path where all edges are heavy.
The heavy path of a node v, denoted H(v), is the unique path of heavy edges
starting at v. Since all nodes only have a single outgoing heavy edge, the heavy
path H(v) and its leaf leaf (H(v)), is well-defined for each node v ∈ G.

A predecessor data structure supports predecessor and successor queries on
a set R ⊆ U = {0, . . . , N − 1} of n integers from a universe U of size N . The
answer to a predecessor query pred(q) is the largest integer r− ∈ R such that
r− ≤ q, while the answer to a successor query succ(q) is the smallest integer
r+ ∈ R such that r+ ≥ q. There exist predecessor data structures achieving a
query time of O(log logN) using space O(n) [21,24,25].

Given a rooted tree T with n vertices, we let depth(v) denote the length of
the path from the root of T to a node v ∈ T . A level ancestor data structure on T
supports level ancestor queries LA(v, i), asking for the ancestor u of v ∈ T such
that depth(u) = depth(v)− i. There is a level ancestor data structure answering
queries in O(1) time using O(n) space [14] (see also [1, 5, 6]).

Fingerprinting The Karp-Rabin fingerprint [20] of a string x is defined as

φ(x) =
∑|x|

i=1 x[i] · ci mod p, where c is a randomly chosen positive integer, and
2N c+4 ≤ p ≤ 4N c+4 is a prime. Karp-Rabin fingerprints guarantee that given
two strings x and y, if x = y then φ(x) = φ(y). Furthermore, if x 6= y, then with
high probability φ(x) 6= φ(y). Fingerprints can be composed and subtracted as
follows.

Lemma 1. Let x = yz be a string decomposable into a prefix y and suffix z. Let
N be the maximum length of x, c be a random integer and 2N c+4 ≤ p ≤ 4N c+4

be a prime. Given any two of the Karp-Rabin fingerprints φ(x), φ(y) and φ(z),
it is possible to calculate the remaining fingerprint in constant time as follows:

φ(x) = φ(y)⊕ φ(z) = φ(y) + c|y| · φ(z) mod p

φ(y) = φ(x)	s φ(z) = φ(x)− c|x|

c|z|
· φ(z) mod p

φ(z) = φ(x)	p φ(y) =
φ(x)− φ(y)

c|y|
mod p

In order to calculate the fingerprints of Lemma 1 in constant time, each finger-
print for a string x must also store the associated exponent c|x| mod p, and we
will assume this is always the case. Observe that a fingerprint for any substring
φ(S[i, j]) of a string can be calculated by subtracting the two fingerprints for
the prefixes φ(S[1, i − 1]) and φ(S[1, j]). Hence, we will only show how to find
fingerprints for prefixes in this paper.

3 Basic fingerprint queries in SLPs

We now describe a simple data structure for answering Fingerprint(1, i) queries
for a string S compressed into a SLP G in time O(h), where h is the height of
the parse tree for S. This method does not unpack the string to obtain the
fingerprint, instead the fingerprint is generated by traversing G.

The data structure stores size(v) and the fingerprint φ(S(v)) of the string
produced by each node v ∈ G. To compose the fingerprint f = φ(S[1, i]) we
start from the root of G and do the following. Let v′ denote the currently visited
node, and let p = 0 be a variable denoting the size the concatenation of strings
produced by left children of visited nodes. We follow an edge to the right child
of v′ if p+ size(left(v′)) < i, and follow a left edge otherwise. If following a right
edge, update f = f ⊕ φ(S(left(v′))) such that the fingerprint of the full string
generated by the left child of v′ is added to f , and set p = p + size(left(v′)).

When following a left edge, f and p remains unchanged. When a leaf is reached,
let f = f ⊕ φ(S(v′)) to include the fingerprint of the terminal character. Aside
from the concatenation of fingerprints for substrings, this procedure resembles a
random access query for the character in position i of S.

The procedure correctly composes f = φ(S[1, i]) because the order in which
the fingerprints for the substrings are added to f is identical to the order in
which the substrings are decompressed when decompressing S[1, i].

Since the fingerprint composition takes constant time per addition, the time
spent generating a fingerprint using this method is bounded by the height of the
parse tree for S[i], denoted O(h). Only constant additional space is spent for
each node in G, so the space usage is O(n).

4 Faster fingerprints in SLPs

Using the data structure of Bille et al. [8] to perform random access queries
allows for a faster way to answer Fingerprint(1, i) queries.

Lemma 2 ([8]). Let S be a string of length N compressed into a SLP G of size
n. Given a node v ∈ G, we can support random access in S(v) in O(log(size(v)))
time, at the same time reporting the sequence of heavy paths and their entry- and
exit points in the corresponding depth-first traversal of G(v).

The main idea is to compose the final fingerprint from substring fingerprints by
performing a constant number of fingerprint additions per heavy path visited.

In order to describe the data structure, we will use the following notation.
Let V (v) be the left children of the nodes in H(v) where the heavy path was
extended to the right child, ordered by increasing depth. The order of nodes in
V (v) is equal to the sequence in which they occur when decompressing S(v),
so the concatenation of the strings produced by nodes in V (v) yields the prefix
P (v) = S(v)[1, L(v)], where L(v) =

∑
u∈V (v) size(u). Observe that P (u) is a

suffix of P (v) if u ∈ H(v). See Figure 1 for the relationship between u, v and
the defined strings.

Let each node v ∈ G store its unique outgoing heavy path H(v), the length
L(v), size(v), and the fingerprints φ(P (v)) and φ(S(v)). By forming heavy path
trees of total size O(n) as in [8], we can store H(v) as a pointer to a node in a
heavy path tree (instead of each node storing the full sequence).

The fingerprint f = φ(S[1, i]) is composed from the sequence of heavy paths
visited when performing a single random access query for S[i] using Lemma 2.
Instead of adding all left-children of the path towards S[i] to f individually,
we show how to add all left-children hanging from each visited heavy path in
constant time per heavy path. Thus, the time taken to compose f is O(logN).

More precisely, for the pair of entry- and exit-nodes v, u on each heavy path
H traversed from the root to S[i], we set f = f ⊕ (φ(P (v)) 	s φ(P (u)) (which
is allowed because P (u) is a suffix of P (v)). If we leave u by following a right-
pointer, we additionally set f = f ⊕ φ(S(left(u))). If u is a leaf, set f = f ⊕
φ(S(u)) to include the fingerprint of the terminal character.

S(u) S(a2) S(b1)

S(v) S(a1) S(a2) S(b1) S(b2)

P (v) S(a1) S(a2)

P (u) S(a2)

a1

a2

a3

b2

b1

v

u

V (v) = {a1, a2, a3} leaf (H(v))

Fig. 1: Figure showing how S(v) and its prefix P (v) is composed of substrings
generated by the left children a1, a2, a3 and right children b1, b2 of the heavy path
H(v). Also illustrates how this relates to S(u) and P (u) for a node u ∈ H(v).

Remember that P (v) is exactly the string generated from v along H, pro-
duced by the left children of nodes on H where the heavy path was extended to
the right child. Thus, this method corresponds exactly to adding the fingerprint
for the substrings generated by all left children of nodes on H between the entry-
and exit-nodes in depth-first order, and the argument for correctness from the
slower fingerprint generation also applies here.

Since the fingerprint composition takes constant time per addition, the time
spent generating a fingerprint using this method is bounded by the number
of heavy paths traversed, which is O(logN). Only constant additional space is
spent for each node in G, so the space usage is O(n). This concludes the proof
of Theorem 1(i).

5 Faster fingerprints in Linear SLPs

In this section we show how to quickly answer Fingerprint(1, i) queries on a
Linear SLP GL. In the following we denote the sequence of k children of root(GL)

r1 r2 r3 r4 r5 r6

a a ab b b

(a) Linear SLP.

r1 r2

r3r4

r5 r6

a b

b

a

a

b

(b) Dictionary tree.

Fig. 2: A Linear SLP compressing the string abbaabbaabab and the dictionary
tree obtained from the Linear SLP.

from left to right by r1, . . . , rk. Also, let R(j) =
∑j

m=1 size(rm) for j = 0, . . . , k.
That is, R(j) is the length of the prefix of S produced by GL including rj (and
R(0) is the empty prefix).

We also define the dictionary tree F over GL as follows. Each node v ∈ GL

corresponds to a single vertex vF ∈ F . There is an edge (uF , vF) labeled c if
u = left(v) and c = S(right(v)). If v is a leaf, there is an edge (root(F), vF)
labeled S(v). That is, a left child edge of v ∈ GL is converted to a parent edge
of vF ∈ F labeled like the right child leaf of v. Note that for any node v ∈ GL

except the root, producing S(v) is equivalent to following edges and reporting
edge labels on the path from root(F) to vF . Thus, the prefix of length a of S(v)
may be produced by reporting the edge labels on the path from root(F) until
reaching the ancestor of vF at depth a.

The data structure stores a predecessor data structure over the prefix lengths
R(j) and the associated node rj and fingerprint φ(S[1, R(j)]) for j = 0, . . . , k.
We also have a doubly linked list of all rj ’s with bidirectional pointers to the
predecessor data structure and GL. We store the dictionary tree F over GL,
augment it with a level ancestor data structure, and add bidirectional pointers
between v ∈ GL and vF ∈ F . Finally, for each node v ∈ GL, we store the
fingerprint of the string it produces, φ(S(v)).

A query Fingerprint(1, i) is answered as follows. Let R(m) be the predeces-
sor of i among R(0), R(1), . . . , R(k). Compose the answer to Fingerprint(1, i)
from the two fingerprints φ(S[1, R(m)]) ⊕ φ(S[R(m) + 1, i]). The first finger-
print φ(S[1, R(m)]) is stored in the data structure and the second fingerprint
φ(S[R(m) + 1, i]) can be found as follows. Observe that S[R(m) + 1, i] is fully
generated by rm+1 and hence a prefix of S(rm+1) of length i − R(m). We can
get rm+1 in constant time from rm using the doubly linked list. We use a level
ancestor query uF = LA(rFm+1, i−R(m)) to determine the ancestor of rFm+1 at
depth i − R(m), corresponding to a prefix of rm+1 of the correct length. From
uF we can find φ(S(u)) = φ(S[R(m) + 1, i]).

It takes constant time to find φ(S[R(m) + 1, i]) using a single level ancestor
query and following pointers. Thus, the time to answer a query is bounded by
the time spent determining φ(S[1, R(m)]), which requires a predecessor query
among k elements (i.e. the number of children of root(GL)) from a universe of
size N . The data structure uses O(n) space, as there is a bijection between nodes
in GL and vertices in F , and we only spend constant additional space per node
in GL and vertex in F . This concludes the proof of Theorem 1(ii).

6 Finger fingerprints in Linear SLPs

The O(log logN) running time of a Fingerprint(1, i) query is dominated by
having to find the predecessor R(m) of i among R(0), R(1), . . . , R(k). Given
R(m) the rest of the query takes constant time. In the following, we show how to
improve the running time of a Fingerprint(1, i) query to O(log log |j−i|) given
a finger for position j. Recall that a finger f for a position j is a pointer to the
node rm producing S[j]. To achieve this, we present a simple linear space finger
predecessor data structure that is interchangeable with any other predecessor
data structure.

Finger Predecessor Let R ⊆ U = {0, . . . , N − 1} be a set of n integers from a
universe U of size N . Given a finger f ∈ R and a query point q ∈ U , the finger
predecessor problem is to answer finger predecessor or successor queries in time
depending on the universe distance D = |f−q| from the finger to the query point.
Belazzougui et al. [4] present a succinct solution for solving the finger predecessor
problem relying on a modification of z-fast tries. Here, we use a simple reduction
for solving the finger predecessor problem using any predecessor data structure
as a black box. The proof is omitted due to lack of space.

Lemma 3. Let R ⊆ U = {0, . . . , N − 1} be a set of n integers from a universe
U of size N . Given a predecessor data structure with query time t(N,n) using
s(N,n) space, we can solve the finger predecessor problem in time O(t(D,n))
using space O(s(N, n

logN) logN).

Using the van Emde Boas predecessor data structure [21, 24, 25] with t(N,n) =
O(log logN) query time using s(N,n) = O(n) space, we obtain the following
corollary.

Corollary 3. Let R ⊆ U = {0, . . . , N−1} be a set of n integers from a universe
U of size N . Given a finger f ∈ R and a query point q ∈ U , we can solve the
finger predecessor problem in time O(log log |f − q|) and space O(n).

Finger Fingerprints We can now prove Theorem 2. Assume wlog that we
have a finger for i, i.e., we are given a finger f to the node rm generating S[i].
From this we can in constant time get a pointer to rm+1 in the doubly linked
list and from this a pointer to R(m + 1) in the predecessor data structure. If

R(m+1) > j then R(m) is the predecessor of j. Otherwise, using Corollary 3 we
can in time O(log log |R(m+1)−j|) find the predecessor of j. Since R(m+1) ≥ i
and the rest of the query takes constant time, the total time for the query is
O(log log |i− j|).

7 Longest Common Extensions in Compressed Strings

Given an SLP G, the longest common extension (LCE) problem is to build a
data structure for G that supports longest common extension queries LCE(i, j).
In this section we show how to use our fingerprint data structures as a tool for
doing LCE queries and hereby obtain Theorem 3.

7.1 Computing Longest Common Extensions with Fingerprints

We start by showing the following general lemma that establishes the connection
between LCE and fingerprint queries.

Lemma 4. For any string S and any partition S = s1s2 · · · st of S into k
non-empty substrings called phrases, ` = LCE(i, j) can be found by comparing
O(log `) pairs of substrings of S for equality. Furthermore, all substring compar-
isons x = y are of one of the following two types:

Type 1 Both x and y are fully contained in (possibly different) phrase sub-
strings.

Type 2 |x| = |y| = 2p for some p = 0, . . . , log(`)+1 and for x or y it holds that
(a) The start position is also the start position of a phrase substring, or
(b) The end position is also the end position of a phrase substring.

Proof. Let a position of S be a start (end) position if a phrase starts (ends) at
that position. Moreover, let a comparison of two substrings be of type 1 (type
2) if it satisfies the first (second) property in the lemma. We now describe how
to find ` = LCE(i, j) by using O(log `) type 1 or 2 comparisons.

If i or j is not a start position, we first check if S[i, i+k] = S[j, j+k] (type 1),
where k ≥ 0 is the minimum integer such that i+k or j+k is an end position. If
the comparison fails, we have restricted the search for ` to two phrase substrings,
and we can find the exact value using O(log `) type 1 comparisons.

Otherwise, LCE(i, j) = k+LCE(i+ k+ 1, j + k+ 1) and either i+ k+ 1 or
j + k + 1 is a start position. This leaves us with the task of describing how to
answer LCE(i, j), assuming that either i or j is a start position.

We first use p = O(log `) type 2 comparisons to determine the biggest integer
p such that S[i, i + 2p] = S[j, j + 2p]. It follows that ` ∈ [2p, 2p+1]. Now let
q < 2p denote the length of the longest common prefix of the substrings x =
S[i+ 2p + 1, i+ 2p+1] and y = S[j + 2p + 1, j + 2p+1], both of length 2p. Clearly,
` = 2p + q. By comparing the first half x′ of x to the first half y′ of y, we can
determine if q ∈ [0, 2p−1] or q ∈ [2p−1 + 1, 2p − 1]. By recursing we obtain the
exact value of q after log 2p = O(log `) comparisons.

However, comparing x′ = S[a1, b1] and y′ = S[a2, b2] directly is not guar-
anteed to be of type 1 or 2. To fix this, we compare them indirectly using
a type 1 and type 2 comparison as follows. Let k < 2p be the minimum in-
teger such that b1 − k or b2 − k is a start position. If there is no such k
then we can compare x′ and y′ directly as a type 1 comparison. Otherwise,
it holds that x′ = y′ if and only if S[b1 − k, b1] = S[b2 − k, b2] (type 1) and
S[a1 − k − 1, b1 − k − 1] = S[a2 − k − 1, b2 − k − 1] (type 2). ut

Theorem 3 follows by using fingerprints to perform the substring comparisons.
In particular, we obtain a Monte Carlo data structure that can answer a LCE
query in O(log ` logN) time for SLPs and in O(log ` log logN) time for Linear
SLPs. In the latter case, we can use Theorem 2 to reduce the query time to
O(log ` log log ` + log logN) by observing that for all but the first fingerprint
query, we have a finger into the data structure.

7.2 Verifying the Fingerprint Function

Since the data structure is Monte Carlo, there may be collisions among the
fingerprints used to determine the LCE, and consequently the answer to a query
may be incorrect. We describe how to obtain a Las Vegas data structure that
always answers LCE queries correctly by efficiently verifying that the fingerprint
function φ is collision-free on all substrings compared in the computation of
LCE(i, j). We give two verification algorithms. One that works for LCE queries
in SLPs, and a faster one that works for Linear SLPs where all internal nodes
are children of the root (e.g. LZ78). Due to lack of space, the details of the
algorithms are omitted. They will appear in a full version of this paper.

The verification algorithm for SLPs has running time O(N2/n logN) and
uses O(n) space. It uses the fingerprints of substrings of size 2p−1 to verify
fingerprints of substrings of size 2p similarly to the verification algorithm in [7].
For Linear SLPs where all internal nodes are children of the root, the running
time is reduced to O(N logN log logN) while using O(n) space.

References

1. S. Alstrup and J. Holm. Improved algorithms for finding level ancestors in dynamic
trees. In Proc. 27th ICALP, pages 73–84, 2000.

2. A. Amir, M. Farach, and Y. Matias. Efficient randomized dictionary matching
algorithms. In Proc. 3rd CPM, pages 262–275, 1992.

3. A. Andoni and P. Indyk. Efficient algorithms for substring near neighbor problem.
In Proc. 17th SODA, pages 1203–1212, 2006.

4. D. Belazzougui, P. Boldi, and S. Vigna. Predecessor search with distance-sensitive
query time. arXiv:1209.5441, 2012.

5. M. Bender and M. Farach-Colton. The level ancestor problem simplified. Theoret.
Comput. Sci., 321:5–12, 2004.

6. O. Berkman and U. Vishkin. Finding level-ancestors in trees. J. Comput. System
Sci., 48(2):214–230, 1994.

7. P. Bille, I. L. Gørtz, B. Sach, and H. W. Vildhøj. Time-space trade-offs for longest
common extensions. In Proc. 23rd CPM, pages 293–305, 2012.

8. P. Bille, G. Landau, R. Raman, K. Sadakane, S. Satti, and O. Weimann. Random
access to grammar-compressed strings. In Proc. 22nd SODA, pages 373–389, 2011.

9. M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Sahai, and
A. Shelat. The smallest grammar problem. IEEE Trans. Inf. Theory, 51(7):2554–
2576, 2005.

10. F. Claude and G. Navarro. Self-indexed grammar-based compression. Fundamenta
Informaticae, 111(3):313–337, 2011.

11. R. Cole and R. Hariharan. Faster suffix tree construction with missing suffix links.
SIAM J. Comput., 33(1):26–42, 2003.

12. G. Cormode and S. Muthukrishnan. Substring compression problems. In Proc.
16th SODA, pages 321–330, 2005.

13. G. Cormode and S. Muthukrishnan. The string edit distance matching problem
with moves. ACM Trans. Algorithms, 3(1):2, 2007.

14. P. F. Dietz. Finding level-ancestors in dynamic trees. In Proc. 2nd WADS, pages
32–40, 1991.

15. M. Farach and M. Thorup. String matching in Lempel–Ziv compressed strings.
Algorithmica, 20(4):388–404, 1998.

16. L. Ga̧sieniec, M. Karpinski, W. Plandowski, and W. Rytter. Randomized efficient
algorithms for compressed strings: The finger-print approach. In Proc. 7th CPM,
pages 39–49, 1996.

17. L. Ga̧sieniec, R. Kolpakov, I. Potapov, and P. Sant. Real-time traversal in
grammar-based compressed files. In Proc. 15th DCC, page 458, 2005.

18. D. Harel and R. E. Tarjan. Fast algorithms for finding nearest common ancestors.
SIAM J. Comput., 13(2):338–355, 1984.

19. A. Kalai. Efficient pattern-matching with don’t cares. In Proc. 13th SODA, pages
655–656, 2002.

20. R. M. Karp and M. O. Rabin. Efficient randomized pattern-matching algorithms.
IBM J. Res. Dev., 31(2):249–260, 1987.

21. K. Mehlhorn and S. Näher. Bounded ordered dictionaries in O(log logN) time and
O(n) space. Inform. Process. Lett., 35(4):183–189, 1990.

22. B. Porat and E. Porat. Exact and approximate pattern matching in the streaming
model. In Proc. 50th FOCS, pages 315–323, 2009.

23. W. Rytter. Application of Lempel–Ziv factorization to the approximation of
grammar-based compression. Theoret. Comput. Sci., 302(1):211–222, 2003.

24. P. van Emde Boas, R. Kaas, and E. Zijlstra. Design and implementation of an
efficient priority queue. Theory Comput. Syst., 10(1):99–127, 1976.

25. D. Willard. Log-logarithmic worst-case range queries are possible in space Θ(N).
Inform. Process. Lett., 17(2):81–84, 1983.

26. J. Ziv and A. Lempel. A universal algorithm for sequential data compression.
Information Theory, IEEE Trans. Inf. Theory, 23(3):337–343, 1977.

27. J. Ziv and A. Lempel. Compression of individual sequences via variable-rate coding.
Information Theory, IEEE Trans. Inf. Theory, 24(5):530–536, 1978.

	Fingerprints in Compressed Strings

